facs1/4 Jupyter Notebook lamindata Binder

Flow cytometry#

You’ll learn how to manage a growing number of flow cytometry data batches as a single queryable dataset.

Specifically, you will

  1. read a single .fcs file as an AnnData and seed a versioned dataset with it (facs1/4, current page)

  2. append a new data batch (a new .fcs file) to create a new version of the dataset (facs2/4)

  3. query individual files and cell markers (facs3/4)

  4. analyze the dataset and store results as plots (facs4/4)

Setup#

!lamin init --storage ./test-facs --schema bionty
Hide code cell output
✅ saved: User(uid='DzTjkKse', handle='testuser1', name='Test User1', updated_at=2023-11-15 15:55:23 UTC)
✅ saved: Storage(uid='HhZboGyf', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/test-facs', type='local', updated_at=2023-11-15 15:55:23 UTC, created_by_id=1)
💡 loaded instance: testuser1/test-facs
💡 did not register local instance on hub

import lamindb as ln
import lnschema_bionty as lb
import readfcs

lb.settings.organism = "human"
💡 lamindb instance: testuser1/test-facs
ln.track()
💡 notebook imports: lamindb==0.61.0 lnschema_bionty==0.35.0 pytometry==0.1.4 readfcs==1.1.7 scanpy==1.9.6
💡 saved: Transform(uid='OWuTtS4SAponz8', name='Flow cytometry', short_name='facs', version='0', type=notebook, updated_at=2023-11-15 15:55:26 UTC, created_by_id=1)
💡 saved: Run(uid='dv0KkZ9kz7pbzJN4cieN', run_at=2023-11-15 15:55:26 UTC, transform_id=1, created_by_id=1)

Ingest a first file#

Access #

We start with a flow cytometry file from Alpert et al., Nat. Med. (2019).

Calling the following function downloads the file and pre-populates a few relevant registries:

ln.dev.datasets.file_fcs_alpert19(populate_registries=True)
PosixPath('Alpert19.fcs')

We use readfcs to read the raw fcs file into memory and create an AnnData object:

adata = readfcs.read("Alpert19.fcs")
adata
AnnData object with n_obs × n_vars = 166537 × 40
    var: 'n', 'channel', 'marker', '$PnB', '$PnE', '$PnR'
    uns: 'meta'

It has the following features:

adata.var.head(10)
n channel marker $PnB $PnE $PnR
Time 1 Time 32 0,0 2097152
Cell_length 2 Cell_length 32 0,0 128
CD57 3 (In113)Dd CD57 32 0,0 8192
Dead 4 (In115)Dd Dead 32 0,0 4096
(Ba138)Dd 5 (Ba138)Dd 32 0,0 4096
Bead 6 (Ce140)Dd Bead 32 0,0 16384
CD19 7 (Nd142)Dd CD19 32 0,0 4096
CD4 8 (Nd143)Dd CD4 32 0,0 4096
CD8 9 (Nd144)Dd CD8 32 0,0 4096
IgD 10 (Nd146)Dd IgD 32 0,0 8192

Transform: normalize #

In this use case, we’d like to ingest & store curated data, and hence, we split signal and normalize using the pytometry package.

import pytometry as pm

First, we’ll split the signal from heigh and area metadata:

pm.pp.split_signal(adata, var_key="channel", data_type="cytof")
'area' is not in adata.var['signal_type']. Return all.

adata
AnnData object with n_obs × n_vars = 166537 × 40
    var: 'n', 'channel', 'marker', '$PnB', '$PnE', '$PnR', 'signal_type'
    uns: 'meta'

Normalize the dataset:

pm.tl.normalize_arcsinh(adata, cofactor=150)

Note

If the dataset was a flow dataset, you’ll also have to compensate the data, if possible. The metadata should contain a compensation matrix, which could then be run by the pytometry compensation function. In the case here, its a cyTOF dataset, which doesn’t (really) require compensation.

Validate: cell markers #

First, we validate features in .var using CellMarker:

validated = lb.CellMarker.validate(adata.var.index)
13 terms (32.50%) are not validated for name: Time, Cell_length, Dead, (Ba138)Dd, Bead, CD19, CD4, IgD, CD11b, CD14, CCR6, CCR7, PD-1

We see that many features aren’t validated because they’re not standardized.

Hence, let’s standardize feature names & validate again:

adata.var.index = lb.CellMarker.standardize(adata.var.index)
validated = lb.CellMarker.validate(adata.var.index)
5 terms (12.50%) are not validated for name: Time, Cell_length, Dead, (Ba138)Dd, Bead

The remaining non-validated features don’t appear to be cell markers but rather metadata features.

Let’s move them into adata.obs:

adata.obs = adata[:, ~validated].to_df()
adata = adata[:, validated].copy()

Now we have a clean panel of 35 validated cell markers:

validated = lb.CellMarker.validate(adata.var.index)
assert all(validated)  # all markers are validated

Register: metadata #

Next, let’s register the metadata features we moved to .obs.

For this, we create one feature record for each column in the .obs dataframe:

features = ln.Feature.from_df(adata.obs)
ln.save(features)

We use the Experimental Factor Ontology through Bionty to create a “FACS” label:

lb.ExperimentalFactor.bionty().search("FACS").head(2)  # search the public ontology
ontology_id definition synonyms parents molecule instrument measurement __ratio__
name
fluorescence-activated cell sorting EFO:0009108 A Flow Cytometry Assay That Provides A Method ... FACS|FAC sorting [] None None None 100.0
FACS-seq EFO:0008735 Fluorescence-Activated Cell Sorting And Deep S... None [EFO:0001457] RNA assay None None 90.0

We found one for “FACS”, let’s save it to our in-house registry:

# import the FACS record from the public ontology and save it to the registry
facs = lb.ExperimentalFactor.from_bionty(ontology_id="EFO:0009108")
facs.save()

We don’t find one for “CyToF”, however, so, let’s create it without importing from a public ontology but label it as a child of “is_cytometry_assay”:

cytof = lb.ExperimentalFactor(name="CyTOF")
cytof.save()
is_cytometry_assay = lb.ExperimentalFactor(name="is_cytometry_assay")
is_cytometry_assay.save()
cytof.parents.add(is_cytometry_assay)
facs.parents.add(is_cytometry_assay)

is_cytometry_assay.view_parents(with_children=True)
_images/a398058052d4c65674ec698205ff7ad57fe848cb1257037f957abb2ca387c0cd.svg

Let us look at the content of the registry:

lb.ExperimentalFactor.filter().df()
uid name ontology_id abbr synonyms description molecule instrument measurement bionty_source_id updated_at created_by_id
id
1 lh5Cxy8w fluorescence-activated cell sorting EFO:0009108 None FACS|FAC sorting A Flow Cytometry Assay That Provides A Method ... None None None 32.0 2023-11-15 15:55:31.625544+00:00 1
2 GXjvVmX4 CyTOF None None None None None None None NaN 2023-11-15 15:55:31.646078+00:00 1
3 7m7kJNrJ is_cytometry_assay None None None None None None None NaN 2023-11-15 15:55:31.658938+00:00 1

Register: data & annotate with metadata #

features = ln.Feature.lookup()
experimental_factors = lb.ExperimentalFactor.lookup()
organism = lb.Organism.lookup()
file = ln.File.from_anndata(adata, description="Alpert19", field=lb.CellMarker.name)
... storing '$PnE' as categorical
... storing '$PnR' as categorical
file.save()

Inspect the registered file#

Inspect features on a high level:

file.features
Features:
  var: FeatureSet(uid='k360KmSegPwXy0Pa2qcl', n=35, type='number', registry='bionty.CellMarker', hash='ldY9_GmptHLCcT7Nrpgo', updated_at=2023-11-15 15:55:32 UTC, created_by_id=1)
    'CD57', 'Cd19', 'Cd4', 'CD8', 'Igd', 'CD85j', 'CD11c', 'CD16', 'CD3', 'CD38', 'CD27', 'CD11B', 'Cd14', 'Ccr6', 'CD94', 'CD86', 'CXCR5', 'CXCR3', 'Ccr7', 'CD45RA', ...
  obs: FeatureSet(uid='VayyfqDQiWfqBTepKxOh', n=5, registry='core.Feature', hash='vSsVwKbR7wCtUoGWZXhD', updated_at=2023-11-15 15:55:32 UTC, created_by_id=1)
    Time (number)
    Cell_length (number)
    Dead (number)
    (Ba138)Dd (number)
    Bead (number)

Inspect low-level features in .var:

file.features["var"].df().head()
uid name synonyms gene_symbol ncbi_gene_id uniprotkb_id organism_id bionty_source_id updated_at created_by_id
id
1 Nb2sscq9cBcB CD57 B3GAT1 27087 Q9P2W7 1 18 2023-11-15 15:55:29.186798+00:00 1
2 8OhpfB7wwV32 Cd19 CD19 930 P15391 1 18 2023-11-15 15:55:29.186838+00:00 1
3 HEK41hvaIazP Cd4 CD4 920 B4DT49 1 18 2023-11-15 15:55:29.186873+00:00 1
4 ttBc0Fs01sYk CD8 CD8A 925 P01732 1 18 2023-11-15 15:55:29.186906+00:00 1
5 0evamYEdmaoY Igd None None None 1 18 2023-11-15 15:55:29.186941+00:00 1

Use auto-complete for marker names in the var featureset:

markers = file.features["var"].lookup()
markers.cd14
CellMarker(uid='roEbL8zuLC5k', name='Cd14', synonyms='', gene_symbol='CD14', ncbi_gene_id='4695', uniprotkb_id='O43678', updated_at=2023-11-15 15:55:29 UTC, organism_id=1, bionty_source_id=18, created_by_id=1)

In a plot, we can now easily also show gene symbol and Uniprot ID:

import scanpy as sc

sc.pp.pca(adata)
sc.pl.pca(
    adata,
    color=markers.cd14.name,
    title=(
        f"{markers.cd14.name} / {markers.cd14.gene_symbol} /"
        f" {markers.cd14.uniprotkb_id}"
    ),
)
_images/96882f86022f4ebb24504c38daba2493d003147c160855fc2626566f42851f9c.png
file.view_flow()
_images/1199f5823cd28afbaa2fbde8ad16a98689c61ea4d417b43674eb1450e7018df7.svg

Create a dataset from the file#

dataset = ln.Dataset(file, name="My versioned cytometry dataset", version="1")

dataset
Dataset(uid='a5aPhqsgPvgFbGxVjpmR', name='My versioned cytometry dataset', version='1', hash='VsTnnzHN63ovNESaJtlRUQ', visibility=0, transform_id=1, run_id=1, file_id=1, created_by_id=1)

Let’s inspect the features measured in this dataset which were inherited from the file:

dataset.features
Features:
  var: FeatureSet(uid='k360KmSegPwXy0Pa2qcl', n=35, type='number', registry='bionty.CellMarker', hash='ldY9_GmptHLCcT7Nrpgo', updated_at=2023-11-15 15:55:32 UTC, created_by_id=1)
    'CD57', 'Cd19', 'Cd4', 'CD8', 'Igd', 'CD85j', 'CD11c', 'CD16', 'CD3', 'CD38', 'CD27', 'CD11B', 'Cd14', 'Ccr6', 'CD94', 'CD86', 'CXCR5', 'CXCR3', 'Ccr7', 'CD45RA', ...
  obs: FeatureSet(uid='VayyfqDQiWfqBTepKxOh', n=5, registry='core.Feature', hash='vSsVwKbR7wCtUoGWZXhD', updated_at=2023-11-15 15:55:32 UTC, created_by_id=1)
    Time (number)
    Cell_length (number)
    Dead (number)
    (Ba138)Dd (number)
    Bead (number)

This looks all good, hence, let’s save it:

dataset.save()

Annotate by linking cytof & organism labels:

dataset.labels.add(experimental_factors.cytof, features.assay)
dataset.labels.add(organism.human, features.organism)
dataset.view_flow()
_images/45b01ef0d8141d57c5fb3f5a97d15332f340a55444a197f8a7a7f71bf9db69f8.svg